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Introduction
Population-based cancer registries usually collect data over an extended period of time e.g. decades. Individu-
als enter these registries when they are diagnosed with a cancer and their survival prognoses will depend on the
effectiveness of available treatment regimens at the time of entry and also the rapidity with which the cancer
was detected. More generally, improvements in survival prognosis can be seen not only as a result of treatment
quality or public health awareness but also as a result of biases associated with screening: over-diagnosis, lead
time and length biases.

In many studies, interest focuses on survival duration and the time of entry into the study is eliminated. In
this poster, we introduce a Bayesian spatiotemporal model that captures both entry-time effects as they evolve
over the study period and also individual survival duration. We use a transformed Gaussian process to model
the time of entry as a risk factor for survival as well as the time interval after enrolment.

Motivational Example

Example 0.1. This example demonstrates
how we want to take into account of both
survival and entering times. Consider a
study of 10 individuals with different enter-
ing and survival times as shown in Figure
1.
• Time is partitioned into 4 intervals; they do NOT

have to have equal length.

• We aim to model both the duration times and the
entering times for individuals.

– Duration times are dealt with based on ordinary
survival analyses.

– Entering times are captured by introducing
some stationary temporal Gaussian processes. Figure 1: Example: Time of Entry and Censoring for Individuals

Methods

Ornstein-Uhlenbeck process [1]
Suppose that {Yt} is a stationary temporal Gaussian process with a separable covariance function such that
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Temporal Baseline Hazard Function

Recall the time intervals shown in Figure 1 Ij = (I lower
j , I

upper
j ), then for t + t

0

in Ij, we define at�1,t =

exp{�✓�t}, where �t = (t + t
0
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j . The new proposed adjustment of the model should allow both

duration time (survival time t) and the real time scale (captured as entering time t
0

take roles in the model.
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f (t;!f) : some ordinary baseline hazard function, e.g. Weibull hazards;
g(t + t
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Note : more details about g can be found in later sections.

Example 0.2. Figure 2 shows an example of the pro-
posed baseline hazard function for an individual in the
study. Here:
• Time is partitioned into 4 intervals by the quantile method;

• The intervals are inclusive of the lower ends

• f is some Weibull hazard function with ↵ = 0.42 and � =

2.57441.

• In this example, the individual entered study in I
1
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4
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. Figure 2: Example: Plot of Proposed Temporal Baseline Hazard

Temporal Cumulative Hazard Function
Define j⇤max = maxj{t + t

0

2 Ij} and j⇤min = minj{t0 2 Ij}, denote g(j) to be the value of function g when
t + t

0

2 Ij, the cumulative baseline hazard thus follows:
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Spatio-Temporal Hazard Function
Based on the proposed temporal baseline hazard function h

0

, the hazard function follows:

h(ti;�, Zi) = exp{Xi� + Zi}h0(ti;!),
Z : some spatially continuous stationary latent Gaussian field, where Zi is the value at location of observation i;
! : vector of parameters in h

0

; eg. ! = (!f , ⌧, ✓, �
(t)
);

� = (�,!, ⌘) : parameters of covariate effects, baseline hazard and parameters of the covariance function of Z respectively.
The Exponential model can be one suitable proposal for Cov(Z); ie. �2

exp{�d/�} for �2 being the marginal variance of
fields and � is the ‘spatial decay’ parameter.

Inference
During the MCMC scheme, we will NOT sample the Z’s nor Y ’s directly, rather with a vector of transformed
variables, � = (�
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transformation of Y ’s
• Recall Equation 3, for each Ij we define the relationship between �
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• The latent process {Yt} is parameterised such that E[exp(Y )] = 1 by setting µ to be �⌧ 2/2 for ⌧ 2 the marginal variance. Apriori,
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• Inference proceed in a similar fashion to [2] by sampling from the joint density ⇡(Y, Z,�|data).
• Note: The transformation of Z takes a very similar path; referred to as �(s).

MCMC

Inference method is an example of a Metropolis-Hastings sampling scheme. Samples are drawn from the pos-
terior ⇡(�, �(s)|data) / ⇡(data|�, �(s))⇡(�, �(s)), using MCMC [3, 4] where the parameters are transformed;
eg. !̃ = log!. The density ⇡(data|�, �(s)) = ⇡(data|�, !̃, �(s)) due to the conditional independence.
• The MCMC scheme has Langevin kernels for �, !̃f , �(s), ⌧̃ , ˜✓, �(t) and a random walk kernel for ⌘̃.
• Algorithm is an example of Metropolis-Hastings sampling:
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– Here the constants h2

� are optimal scalings in MALA proposals [6]; More details can be seen in R package spatsurv [7]. The
optimal value of h should give asymptotic acceptance rate 0.574.

Test Results
This method is tested on the skin cancer data in California between 1973 � 2013 [5]. Here the test model
considered age and sex as covariates. In the baseline hazard function, t

0

and t are the diagnostic and survival
times respectively. For testing purpose, we only worked with 1000 random samples from the whole dataset.

The test model ran 500000 iterations with burning length 1000 and thining 50. The MCMC chain plot has
shown satisfactory convergence and mixing with scaling parameter h being close to 1.
• Fixed effects and parameters for baseline hazard and spatial covariance are shown as below:

Sex Age ↵ � ⌧ ✓ �
(t)
1

�
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(t)
3

�
(t)
4

� �

mean 0.85 1.05 0.63 0.04 2.90 6.94⇥ 10�3 0.28 0.23 0.32 0.52 0.71 1.10⇥ 105

2.5% 0.67 1.04 0.57 0.02 2.64 4.66⇥ 10

�3

0.10 0.05 0.14 0.24 0.53 7.30⇥ 10

4

97.5% 1.12 1.06 0.70 0.08 3.16 1.02⇥ 10

�2

0.48 0.43 0.52 0.74 0.99 1.65⇥ 10

5

Table 1: Baseline Hazard Parameters and 95% Confidence Bands

• The influence of the choice of prior (log-scale prior in red) on the
resulting parameter estimates (histogram); example is shown in
Figure 3. For each parameter, a big difference between the prior
and posterior, indicates that the data are informative about that
parameter. Figure 4 shows the posterior median of the spatial
covariance function and 95% credible interval;

• Figure 5 shows the posterior probability that the covariate-
adjusted relative risk greater than 1.1. Areas of high probability
(in red) in this plot are where the relative risk of death occur-
ring adjusted for age and sex, is such that there may be cause for
concern by public health authorities;

• Figure 6 shows the values of exp(g) over time with the 95% cred-
ible interval.

Figure 3: Prior (red line) and posterior (histogram) for age

0 50000 100000 150000 200000 250000

0.0
0.2

0.4
0.6

0.8
1.0

Distance

Covari
ance

0.975
0.5
0.025

Figure 4: Posterior median of the spatial covariance

Figure 5: Map of Relative Risk
Figure 6: Plot of exp{g} over real time; brk denote break points
for intervals.

Forthcoming Research
We will be working with the full cancer dataset in the future; the method shall be further developed to include
but not limited to the followings:
• the current baseline hazard function should be extended to allow free survival and entering times for evaluation of hazard func-

tions and time varying covariates, say !(t + t
0

);
• censoring types can be extended to include interval censoring;
• developing methods for spatio-temporal prediction over data;
• reducing the computational costs.
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