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Model
Conditional intensity: λ(x, t|Ht) = λ0(t) exp{βz(x)}g(x, t|Ht)

Results
The likelihood ratio tests between a number of models support:

• g(x, t|Ht) = h
(

minj:tj<t(||xj − x||)
)

, hence evidence only for spatial depen-
dence between nearest neighbours,

• h describes the relationship between events in space. Its form allows for minimum
separation distance and for exponentially decaying interaction between nests

h(u) =

{

0, u ≤ d0

1 + θ exp
{

−
(u−d0)

φ

}

, u > d0,
(5)

where φ and θ are the parameters of interest,

• z(x) the elevation at location x, and β the size of the log-linear effect which is
found to be significant (p-value < 10−6).
β̂MPLE = 0.05, Monte Carlo standard error equal to 6.5 × 10−4.
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Monte Carlo test for goodness of fit of the spatial

kernel h for the birds’ data for islet 84, using model

M1 and κ = 1: data (–); 99 simulated datasets of

the process corresponding to the model (–). The es-

timated spatial kernel gives evidence of positive in-

teraction between nests for distances up to 15 m.
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Bird nesting at the Delta dEbre in Spain
Data
• Settlement pattern of common terns on 21 small islets at the Ebro Delta Natural

Park in Spain, which were regularly inspected at two-day intervals during the 2000
breeding season

• Data: locations and arrival times (xi, ti) of nesting birds

• Birds known to prefer higher ground for nesting

• No two nests can coexist within minimum separation distance, d0 ≈ 0.25 m

Question of interest: Does the spatio-temporal pattern of nesting sites show any evi-
dence of spatial interaction beyond the minimum separation distance?

In order to include the covariate elevation in the model, we approximate the surface
by assigning each point on the islet to the elevation of the point closest to it, which
requires no parametric assumptions.

Model
Conditional intensity: λ(x, t|Ht) =

∑n(t)
j=1 λj(x, tj)I[(t − tj) < δ] + ρ

• λj(x, tj) = λf (x− xj); f = f (x− xj) = 1
2πκ exp

(

− 1
2κ(||x − xj||)

2
)

• ρ is the rate of spontaneous cases

Evaluate the integral:

1. Analytically:
∫

A f (||x − xj||)dx = Pr(a ≤ X1 ≤ b) × Pr(c ≤ X2 ≤ d)

2. Using a quadrature method; quadrature weights = areas of Voronoi tiles
Then the integral can be approximated by a definite weighted sum,

∫

A
λ(x, ti|Hti)dx ≈

K
∑

k=1

wkλ(uk, t|Ht),

κ r = ρ/λ

exact value 0.0010 0.47

(0.0009, 0.0013) ( 0.29, 0.78)

10 × 10 grid 0.0009 0.46

(0.0007, 0.0013) (0.25, 0.85)

25 × 25 grid 0.0010 0.47

(0.0009, 0.0013) (0.29, 0.78)

Mean values and associated CIs for the

MPLEs of κ and r = ρ/λ based on 100

realisations of approximate size 100 of

the infectious disease process model with

λ = 10, ρ = 5, κ = 0.001 and δ = 0.1.

Results
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* uk; k = 1, . . . ,K: the design points, used to form
a partition of the spatial region A, according to the
Voronoi tessellation,

* wk: the area of the tile that contains the point uk,

*
∑K

k=1 wk = |A|.

Infectious disease model
Simulation
An infectious disease model in A × [0, T ]; A = [a, b] × [c, d] may be described by
the algorithm:

• The first event occurs at a random location and time (x0, t0) ∈ A × [0, T ].

• Progenitor event (x0, t0) generates offspring at rate λ, within time δ since its
birth. The locations of the offspring xoff are determined by xoff = xpar + w,
where w ∼ f . f is a bivariate distribution, e.g. w ∼ BVN((0, 0)′, Σ), Σ = σ2I .

• Each first-generation offspring produces offspring of second generation within
time δ from their parent events in the same way.

• Generations of events stop when time T is reached.

• Processes producing events following the same routine initiate by new progen-
itor events, occurring at rate ρ, at random locations (x, t) ∈ A × [0, T ].
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Spatial locations of a realisation of the infectious disease point process model λ = 10, rho = 5,

κ = 0.001 and δ = 0.1. • progenitor events and • offspring

Partial Likelihood Formulation
To obtain the partial likelihood we condition on the times ti, and then take into ac-
count the log-likelihood formed for the observed time-ordering of the events i =
1, ..., n. Let Ri the risk set at time ti. The contribution of the ith event to the partial
likelihood is

pi =
λ(xi, ti|Hti)

∫

Ri
λ(x, ti|Hti)dx

. (2)

Then, the partial likelihood is given by

Lp(θ) =

n
∑

i=1

log pi =

n
∑

i=1

log λ(xi, ti|Hti) −

n
∑

i=1

log

{
∫

Ri

λ(x, ti|Hti)dx

}

. (3)

For a spatially continuous point process model, for which points of the process can
occur anywhere in the spatial region of interest A, the risk set Ri is the whole spatial
region A. On the other hand, for a spatially discrete point process model points of the
process can only occur at a finite set of locations xj; j = 1, . . . , N , for some N ≥ n.
Hence, the integral appearing in Equations (2) and (3) reduces to a sum and

Lp(θ) =

n
∑

i=1

log λ(xi, ti|Hti) −
n

∑

i=1

log







∑

j≥i

λ(xi, ti|Hti)







. (4)

We present two examples of continuous point process models for which application
of the full likelihood is intractable, whereas the partial likelihood method is applica-
ble and can be used to conduct inference.

Introduction
Estimation of the parameters of interest of spatio-temporal point process models is
performed using the partial likelihood method.

• Data: (xi, ti) ∈ A × [0, T ]; i = 1, ..., n, where xi is the location and ti is the time
of occurrence of an event of interest

•Ht: the complete history of the process up to time t

• λ(x, t|Ht): the conditional intensity for an event at location x and time t.

The full log-likelihood function of the process is given by

L(θ) =

n
∑

i=1

log λ(xi, ti|Hti) −

∫ T

0

∫

A
λ(x, t|Ht)dxdt. (1)

Maximisation of Equation (1) with respect to the parameters of interest, θ, gives the
maximum likelihood estimators (MLE’s) of θ.

However,

1. the conditional intensity λ(x, t|Ht) may be intractable

2. the double integral appearing in Equation (1) usually cannot be evaluated by ap-
plying routine methods.

We propose a partial likelihood as an alternative to the full likelihood for spatiotem-
poral point processes. Partial likelihood was originally introduced by Cox (1972) for
applications in survival analysis. Diggle (2006) suggests that partial likelihood can
also be used for spatiotemporal models that can be defined through their conditional
intensity.
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