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s1, $2 on the grid, the spatial covariance between the two
locations 1s:

Log-Gaussian Cox Processes Unfortunately the expression,

Conditional on a spatially and temporally continuous Gaus-

sian field, ¢/, observations, X, are assumed to arise from
a Poisson process with rate function,

(X, (s,t)|%;(s,1),&) ~ Poisson{A(s)A(t) exp|%(s,t)]|},
(1)
where A (s) and A (z) are respectively deterministic spatial
and temporal components of the intensity. It 1s common
to approximate ¢ by a discrete version, Y, see [7, 2].
In the above, ¢ = (0, ¢,u,0) are the parameters of Y.
Conditional on a realisation of the field, yq, at time O say,
the transition density of the field at time ¢, corresponding
to the random variable ¥, 1s,

7(Y,y0,8) ~ N[y a(t) +b(t)yo, G(1)]. (2)

Under the assumptions of [2],
a(t) = p[1—exp(—01)],
b(t) = exp(—01)I,
G(t) = [1 —exp(—2601)|R

where I 1s 1dentity matrix and R 1s the spatially stationary
covariance on the grid and 1 = (1,...,1)’. For any two

R(s1,52) = 0°r(—||s1 — 2/|/9),

for some correlation function r.

The Difficulty with Vanilla
Metropolis-Hastings

Assume that observations xi.7 have arisen conditional on
the latent field y;.7 which is parametrised by . Bayesian
inference about ¢ is via the posterior, 7(&|x1.7), which
is proportional to 7w(x;.7|&)m(E). A Metropolis-Hastings
algorithm [6, 5] to sample from this posterior would work
as follows.

Suppose the current value of the chain is &. Sample &*
from a density ¢(&,&*) and accept the move (ie set &
E*) with probability,
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involves a high-dimensional and analytically intractable
integral.

A Useful Sequential Monte Carlo Identity

Suppose that a weighted sample of size M from the dis-
cretised field conditional on the data,

S= OV WO, ~ 2o, €),

is available; here the W) are normalised weights.
Consider an importance re-weighting step to move the
sample S from being distributed as 7(yy.7|x1.7, &), to be-
ing distributed as m(yy.7|x1.7,£*). The jth importance
weight 1s proportional to,
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(5)

this gives $* =

It turns out that the ratio of the normalising constants of
the densities 7 (y.7|x1.7,&*) and w(y1.7|x1.7, &) can be es-
timated unbiasedly by the sum of the unnormalised 1m-
portance weights, that 1s,

A

7T (x1.7|S*)

m(x1.7|S)

see [3]. This unbiased estimate will replace the exact ver-
sion 1n equation (3) and motivates the new algorithm.

Z wU (6)

Importance-Weighted MCMC

The proposed algorithm (IWMCMC) proceeds from an
initial choice of parameters ¢, say. Using the MALA
algorlthm of [2], sample {y1 WU~ (yyr|xr, €),

j=1
where W) = 1/M for all j. The choice of the initial

parameters should be such that the MALA chain mixes
well. IWMCMC proceeds as follows:

1. Propose a move from & to &* from g.

2. Accept the move with probability,

e

5. The sample {yi{)T,W(

where wl/) is as defined in (5).

3. If the move IS accepted:

e Update the parameter < C*.
e Compute new normalised importance weights,

WO W) /M 0

where the W's on the RHS of the above are the old val-

ucs.

4. Else 1f the move 1s NOT accepted:

e Update the parameter £ < &, ie stay put.
M

=1 " n()’l:T’xlzTyg)- Go to 1.

Simulation Study

Data were simulated from a discrete approximation to a
log-Gaussian Cox process with parameters,

c={0=2,¢=30, u=-3, 6 =2}, (7)

on an observation window of dimension 100 x 100 units
and for a time period of length 11 days. The MALA al-

gorithm was run for 700000 iterations, 200000 of which

were discarded as burn-in; the chain was thinned by 100
and the last three days of data were used to estimate the
parameters.

Fig 1: Prior and Posterior of Parameters
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IWMCMC was run for 3000 iterations, discarding the
first 1500 as burn-in. Figures 1-3 show plots of the prior
and posterior of the parameters as well as trace and auto-
correlation plots. MCMC for the parameters took place
on the log scale for for o, ¢ and 0.

A combination of the adaptive MCMC methods of [4] and
[1] were used to automatically tune both the MALA as
well as IWMCMC. The proposal kernel g was a Gaussian
density centred on the current &; after 1000 iterations,

the empirical covariance of the chain-to-date was used to

inform the proposal variance.
Fig 2: Traceplots of log(c) and log(¢)
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The posterior credible intervals for the parameters were:
Parameter| Median 0.025% 0.975%

o 127 | 111 | 155
& 18.05 13.37  28.31
u 351 | -3.92 | -3.03
0 566 @ 2.69 | 19.28

Conclusions and Further Work
This poster has introduced a new MCMC method for sam-

pling from the posterior density of the parameters of a
latent random variable given a set of realisations of a ran-
dom process conditional on the unobserved latent vari-
able. Early simulation results indicate that the method
has potential to perform well for Bayesian inference with
log-Gaussian Cox processes.

Fig 3: Traceplots of u and log(0)
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Further work 1n this area will seek to explore the influence
of the chosen parametrisation of % on the performance
of IWMCMC. Also of interest 1s the possibility of using

particle-based methods; either as an in-line solution, or
as an alternative to the proposed IWMCMC. A further
avenue for research concerns the development of robust
methods for choosing a good initial &; though various ad-
hoc methods already exist, eg [2].

R Package

IWMCMC will be released as part of an R package, 1gcp,
for inference with log-Gaussian Cox processes.
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