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Log-Gaussian Cox Processes
Conditional on a spatially and temporally continuous Gaus-
sian field, Y , observations, X , are assumed to arise from
a Poisson process with rate function,

π(Xt(s, t)|Yt(s, t),ξ )∼ Poisson{λ (s)λ (t)exp[Yt(s, t)]},
(1)

where λ (s) and λ (t) are respectively deterministic spatial
and temporal components of the intensity. It is common
to approximate Y by a discrete version, Y , see [7, 2].
In the above, ξ = (σ ,φ ,µ,θ) are the parameters of Y .
Conditional on a realisation of the field, y0, at time 0 say,
the transition density of the field at time t, corresponding
to the random variable Yt is,

π(Yt|y0,ξ )∼ N[yt;a(t)+b(t)y0,G(t)]. (2)

Under the assumptions of [2],

a(t) = µ[1− exp(−θ t)],
b(t) = exp(−θ t)I,
G(t) = [1− exp(−2θ t)]R,

where I is identity matrix and R is the spatially stationary
covariance on the grid and 1 = (1, . . . ,1)T . For any two

s1, s2 on the grid, the spatial covariance between the two
locations is:

R(s1,s2) = σ
2r(−||s1− s2||/φ),

for some correlation function r.

The Difficulty with Vanilla
Metropolis-Hastings

Assume that observations x1:T have arisen conditional on
the latent field y1:T which is parametrised by ξ . Bayesian
inference about ξ is via the posterior, π(ξ |x1:T), which
is proportional to π(x1:T |ξ )π(ξ ). A Metropolis-Hastings
algorithm [6, 5] to sample from this posterior would work
as follows.
Suppose the current value of the chain is ξ . Sample ξ ?

from a density q(ξ ,ξ ?) and accept the move (ie set ξ ←
ξ ?) with probability,

min
{

1,
π(x1:T |ξ ?)π(ξ ?)

π(x1:T |ξ )π(ξ )
q(ξ ?,ξ )

q(ξ ,ξ ?)

}
. (3)

Unfortunately the expression,

π(x1:T |ξ ) =
∫

π(x1:T |y1:T ,ξ )π(y1:T |ξ )dy1:t, (4)

involves a high-dimensional and analytically intractable
integral.

A Useful Sequential Monte Carlo Identity
Suppose that a weighted sample of size M from the dis-
cretised field conditional on the data,

S = {y( j)
1:T ,W

( j)}M
j=1 ∼ π(y1:T |x1:T ,ξ ),

is available; here the W ( j) are normalised weights.
Consider an importance re-weighting step to move the
sample S from being distributed as π(y1:T |x1:T ,ξ ), to be-
ing distributed as π(y1:T |x1:T ,ξ

?). The jth importance
weight is proportional to,

w( j) =
π(x1:T |y( j)

1:T ,ξ
?)

π(x1:T |y( j)
1:T ,ξ )

π(y( j)
1:T |ξ ?)

π(y( j)
1:T |ξ )

=
π(y( j)

1:T |ξ ?)

π(y( j)
1:T |ξ )

, (5)

this gives S? = {y( j)
1:T ,W

( j)w( j)}M
j=1 ∼ π(y1:T |x1:T ,ξ

?).

It turns out that the ratio of the normalising constants of
the densities π(y1:T |x1:T ,ξ

?) and π(y1:T |x1:T ,ξ ) can be es-
timated unbiasedly by the sum of the unnormalised im-
portance weights, that is,

̂π(x1:T |ξ ?)

π(x1:T |ξ )
=

M

∑
j=1

W ( j)w( j), (6)

see [3]. This unbiased estimate will replace the exact ver-
sion in equation (3) and motivates the new algorithm.

Importance-Weighted MCMC
The proposed algorithm (IWMCMC) proceeds from an
initial choice of parameters, ξ , say. Using the MALA
algorithm of [2], sample {y( j)

1:T ,W
( j)}M

j=1∼ π(y1:T |x1:T ,ξ ),
where W ( j) = 1/M for all j. The choice of the initial
parameters should be such that the MALA chain mixes
well. IWMCMC proceeds as follows:
1. Propose a move from ξ to ξ ? from q.
2. Accept the move with probability,

min

{
1,

π(ξ ?)

π(ξ )

q(ξ ?,ξ )

q(ξ ,ξ ?)

M

∑
j=1

W ( j)w( j)

}
,

where w( j) is as defined in (5).
3. If the move IS accepted:
• Update the parameter ξ ← ξ ?.
• Compute new normalised importance weights,

W ( j)←W ( j)w( j)/
∑

M
i=1W (i)w(i)

where the W s on the RHS of the above are the old val-
ues.

4. Else if the move is NOT accepted:
• Update the parameter ξ ← ξ , ie stay put.

5. The sample {y( j)
1:T ,W

( j)}M
j=1 ∼ π(y1:T |x1:T ,ξ ). Go to 1.

Simulation Study
Data were simulated from a discrete approximation to a
log-Gaussian Cox process with parameters,

ξ = {σ = 2, φ = 30, µ =−3, θ = 2}, (7)

on an observation window of dimension 100× 100 units
and for a time period of length 11 days. The MALA al-
gorithm was run for 700000 iterations, 200000 of which

were discarded as burn-in; the chain was thinned by 100
and the last three days of data were used to estimate the
parameters.

Fig 1: Prior and Posterior of Parameters
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IWMCMC was run for 3000 iterations, discarding the
first 1500 as burn-in. Figures 1–3 show plots of the prior
and posterior of the parameters as well as trace and auto-
correlation plots. MCMC for the parameters took place
on the log scale for for σ , φ and θ .
A combination of the adaptive MCMC methods of [4] and
[1] were used to automatically tune both the MALA as
well as IWMCMC. The proposal kernel q was a Gaussian
density centred on the current ξ ; after 1000 iterations,

the empirical covariance of the chain-to-date was used to
inform the proposal variance.

Fig 2: Traceplots of log(σ) and log(φ)
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The posterior credible intervals for the parameters were:
Parameter Median 0.025% 0.975%

σ 1.27 1.11 1.55
φ 18.05 13.37 28.31
µ -3.51 -3.92 -3.03
θ 5.66 2.69 19.28

Conclusions and Further Work
This poster has introduced a new MCMC method for sam-

pling from the posterior density of the parameters of a
latent random variable given a set of realisations of a ran-
dom process conditional on the unobserved latent vari-
able. Early simulation results indicate that the method
has potential to perform well for Bayesian inference with
log-Gaussian Cox processes.

Fig 3: Traceplots of µ and log(θ)
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Further work in this area will seek to explore the influence
of the chosen parametrisation of Y on the performance
of IWMCMC. Also of interest is the possibility of using

particle-based methods; either as an in-line solution, or
as an alternative to the proposed IWMCMC. A further
avenue for research concerns the development of robust
methods for choosing a good initial ξ ; though various ad-
hoc methods already exist, eg [2].

R Package
IWMCMC will be released as part of an R package, lgcp,
for inference with log-Gaussian Cox processes.
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