Assessing variability in histological grade of breast cancer tumours

T.R. Fanshawe, CHICAS, Department of Medicine, Lancaster University: t.fanshawe@lancaster.ac.uk

Data from the National External Quality Assurance (EQA) Scheme for Breast Cancer Histopathology:

- Digitised images of histological tissue sections of 52 breast cancer tumours
- 732 UK pathologists (raters) gave grades (G1, G2 or G3) to an average of 33 tumours each (63%)
- Each tumour was graded by between 390 (53%) and 513 (70%) raters
- No 'Ground Truth': grading is subjective

Are All Raters Equal?

 It seems not 	Rater	
	1	
 Big differences in distribution of grades awarded 	2 3	
 Rater 1 gave 0 Grade 1s out of 20 tumours 	4	
	5	
	6	
 Rater 10 gave 20 Grade 1s out of 31 tumours 	7	
	8	
	9	
 Different raters may have seen different tumours 	10	

Acknowledgements

A.G. Lynch, I.O. Ellis, A.R. Green, R. Hanka The EQA scheme is funded by the NHS Breast Screening Program Fanshawe, Lynch *et al*: PLoS ONE 3(8): e2925. doi:10.1371/journal.pone.0002925

- ulation

- rater

A Simple Summary Measure

• For each rater, calculate the proportion of raters with whom he agrees on a given tumour

• Average these across all tumours graded by the rater

Plot values from all raters as a funnel plot (right)

95% and 99% envelopes estimated by Monte Carlo sim-

• Too many points outside envelopes: evidence that some raters are doing worse than others

Cumulative Logit Model : The Idea

• Each tumour has a 'true severity' μ on a hypothetical continuous scale • There are also 'true' boundaries b_{12} and b_{23} on the scale that dictate the 'true' grade i.e. $\mu < b_{12} \Rightarrow G1; b_{12} < \mu < b_{23} \Rightarrow G2; \mu > b_{23} \Rightarrow G3$

• Each rater has his own set of boundary parameters that determine which grade he will assign (below right)

For rater j and tumour i:

P(j assigns G3 to i) = logit⁻¹(f(i, j)) P(*j* assigns G2 or G3 to *i*) = logit⁻¹(g(i, j))

$$f(i,j) = \lambda_i(\mu_i - b_{23,j})$$
$$g(i,j) = \lambda_i(\mu_i - b_{12,j})$$

 (λ_i) are 'clarity' parameters, (μ_i) are 'severity' parameters $(b_{12,j})$ and $(b_{23,j})$ are 'boundary' parameters

• Graph shows estimated boundaries b_{12} and b_{23} for each

 Most common discrepancy is for raters to either underestimate or over-estimate both boundaries

Sampling from posterior distributions enables quantities of interest to be estimated

• Heat-map shows the estimated probability, for each tumour, of a rater agreeing with the majority

Right-hand panel shows the estimated marginal distribution of grades for each tumour

